
Car Rental Solution Deployment Plan
This document outlines the deployment plan for the car rental solution, detailing the architecture, deployment options, and step-by-step 
instructions for a successful launch.

Solution Architecture
Admin Panel: ASP.NET MVC application with an SQL Server 
database. This includes the main application URL and a separate 
API URL, requiring two distinct deployments.

Azure Blob Storage: Utilized for storing documents and images, 
ensuring scalable and cost-effective storage.

Frontend Website: A React.js application that communicates with 
the API to handle booking data and user interactions.

Deployment Options
The application can be deployed on Azure App Service or using 
alternative hosting solutions. Here's a more detailed deployment 
plan.

Detailed Deployment Plan

Prerequisites:1.

An active Azure subscription or alternative hosting environment.

SQL Server instance (Azure SQL Database recommended).

Azure Blob Storage account.

Visual Studio for ASP.NET MVC deployment.

Node.js and npm for React.js deployment.

Admin Panel Deployment:2.

Deploy the ASP.NET MVC application to Azure App Service (or preferred hosting).

Configure connection strings to point to the SQL Server database.

Deploy the API URL separately, ensuring it is secured and accessible.

Test both application and API endpoints thoroughly.

Azure Blob Storage Configuration:3.

Create containers within the Azure Blob Storage account for documents and images.

Configure appropriate access policies and security settings.

Update the Admin Panel to use Azure Blob Storage for uploading and retrieving files.

Frontend Website Deployment:4.

Build the React.js application for production.

Deploy the built files to Azure App Service (or preferred hosting).

Configure the frontend to communicate with the deployed API URL.

Ensure all frontend routes and functionalities are working correctly.

Testing and Validation:5.

Perform end-to-end testing to verify the entire solution is working as expected.

Conduct user acceptance testing (UAT) with key stakeholders.

Monitor application performance and address any issues promptly.

Go-Live and Monitoring:6.

Coordinate the go-live date and communicate with all relevant parties.

Continuously monitor application health, performance, and security.

Establish a process for addressing bugs and feature requests.

https://gamma.app/?utm_source=made-with-gamma

